Compactification of the Prym Map for Non Cyclic Triple Coverings

نویسندگان

  • HERBERT LANGE
  • ANGELA ORTEGA
چکیده

According to [LO], the Prym variety of any non-cyclic étale triple cover f : Y → X of a smooth curve X of genus 2 is a Jacobian variety of dimension 2. This gives a map from the moduli space of such covers to the moduli space of Jacobian varieties of dimension 2. We extend this map to a proper map Pr of a moduli space S3M̃2 of admissible S3-covers of genus 7 to the moduli space A2 of principally polarized abelian surfaces. The main result is that Pr : S3M̃2 → A2 is finite surjective of degree 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prym Varieties of Cyclic Coverings

The Prym map of type (g, n, r) associates to every cyclic covering of degree n of a curve of genus g, ramified at a reduced divisor of degree r, the corresponding Prym variety. We show that the corresponding map of moduli spaces is generically finite in most cases. From this we deduce the dimension of the image of the Prym map.

متن کامل

Theta constants associated with the cyclic triple coverings of the complex projective line branching at six points ∗

Let ψ be the period map for a family of the cyclic triple coverings of the complex projective line branching at six points. The symmetric group S6 acts on this family and on its image under ψ. In this paper, we give an S6-equivariant expression of ψ −1 in terms of fifteen theta constants.

متن کامل

Prym varieties of pairs of coverings

The Prym variety of a pair of coverings is defined roughly speaking as the complement of the Prym variety of one morphism in the Prym variety of another morphism. We show that this definition is symmetric and give conditions when such a Prym variety is isogenous to an ordinary Prym variety or to another such Prym variety. Moreover in order to show that these varieties actually occur we compute ...

متن کامل

Algebraic description of Jacobians isogeneous to certain Prym varieties with polarization (1,2)∗

For a class of non-hyperelliptic genus 3 curves C which are 2-fold coverings of elliptic curves E, we give an explicit algebraic description of all birationally nonequivalent genus 2 curves whose Jacobians are degree 2 isogeneous to the Prym varieties associated to such coverings. Our description is based on previous studies of Prym varieties with polarization (1,2) in connection with separatio...

متن کامل

Polarizations of Prym Varieties of Pairs of Coverings

To any pair of coverings fi : X → Xi, i = 1, 2 of smooth projective curves one can associate an abelian subvariety of the Jacobian JX , the Prym variety P (f1, f2) of the pair (f1, f2). In some cases we can compute the type of the restriction of the canonical principal polarization of JX . We obtain 2 families of Prym-Tyurin varieties of exponent 6.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011